

Part IV: Weakly-Supervised Information Extraction

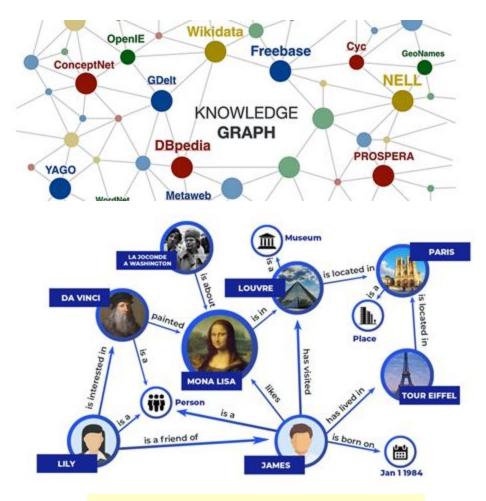
Automated Mining of Structured Knowledge from Text in the Era of Large Language Models Yunyi Zhang, Ming Zhong, Siru Ouyang, Yizhu Jiao, Sizhe Zhou, Linyi Ding, Jiawei Han Computer Science, University of Illinois Urbana-Champaign KDD 2024 Tutorial, Aug 25, 2024

Outline

- Entity Typing
- Relation Extraction
- Comprehensive Knowledge Structuring

Overview of Knowledge Graphs

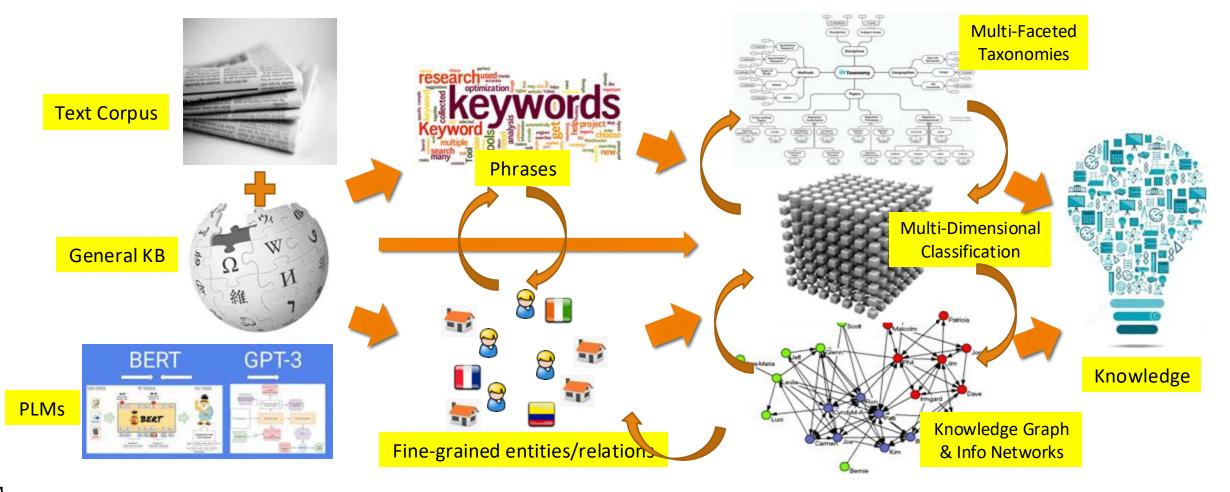
- General knowledge graphs
 - Ex. Wikidata, DBPedia, Freebase, Yago ...
 - Cover a wide range of topics and domains for broad applicability
- Domain-specific knowledge graphs
- Ex. UMLS (medical), PubChem (chemical)...
- Cover specialized knowledge for domainspecific need
- Theme-specific knowledge graphs
 - Ex. Ukraine War, EV battery or LLM
 - Cover highly detailed information on a particular theme for specialized applications.



Ack. Figures are from Google images

Knowledge Graph Construction

It can be comprehensive task that may involve several subtasks like phrase mining, entity typing, relation extraction...



Phrase Mining Tools

Pre-trained off-the-shelf toolkits

- PKE: chunking model based on supervised POS tagging model from NLTK
- Spacy: industrial-grade library based on pre-trained phrase chunking model
- StanfordCoreNLP: NLP library pre-trained on dependency parsing data

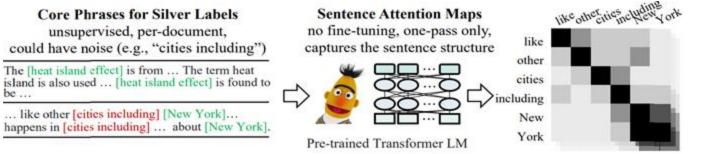
KB-based distantly-supervised methods

 AutoPhrase: uses distantly supervision for silver labels generation and statisticbased binary phrase classifier with POS-guided segmentation

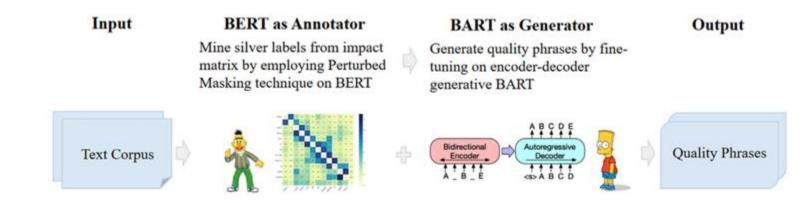
Phrase Mining Tools

Unsupervised methods

- **ToPMine:** builds upon statistical features to discover arbitrary length phrases
- UCPhrase: uses silver label generation with attention map-based span prediction



LMPhrase: Constructs silver labels from annotator (BERT) and fine-tunes seq2seq generator (BART) for phrase generation



Quantitative Evaluation

Model type	Model name	KP20k	KP20k			KPTimes			
model type	model nume	Precision	Recall	F1	Precision	Recall	F1		
	PKE	54.1	63.9	58.6	56.1	62.2	59.0		
Off-the-shelf toolkit	Spacy	56.3	68.7	61.9	61.9	62.9	62.4		
	StanfordNLP	48.3	60.7	53.8	56.9	60.3	58.6		
Distantly, supervised	AutoPhrase	55.2	45.2	49.7	44.2	47.7	45.9		
Distantly supervised	Wiki+RoBERTa	58.1	64.2	61.0	60.9	65.6	63.2		
	TopMine	39.8	41.4	40.6	32.0	36.3	34.0		
Unsupervised	UCPhrase	<u>69.9</u>	78.3	73.9	<u>69.1</u>	78.9	<u>73.5</u>		
	LMPhrase (Ours)	71.9	79.2	75.3	73.2	79.2	76.1		

Evaluation results (%) of sentence-level phrase tagging for all compared methods. The best results are in bold, and the second best are underlined.

Gu, Xiaotao, et al., "Ucphrase: Unsupervised context-aware quality phrase tagging." KDD'21

Zhang, Zhihao, et al., "Language models as an Annotator: Unsupervised context-aware quality phrase generation." KBS'24

Outline

- Overview
- Entity Typing
 - Knowledge-based Entity Typing
 - Ontology-guided Entity Typing
- Relation Extraction
- Comprehensive Knowledge Structuring

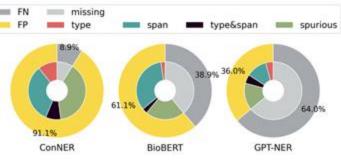
Motivation

- Entity typing is a fundamental task in text mining with a wide spectrum of applications
 - question answering
 - knowledge base construction
 - dialog systems

- Deep neural models have achieved enormous success for entity typing
- However, a common bottleneck of training deep learning models is the acquisition of abundant high-quality human annotations (every entity in the sequence needs to be labeled!)

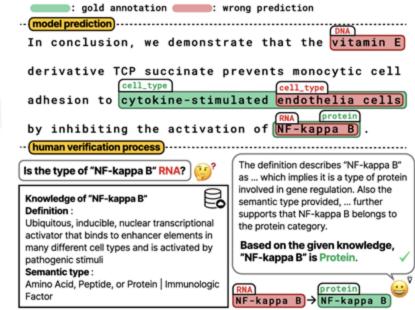
VerifiNER: Verification-augmented

- **Fine-tuned models:** false positive errors are the majority
- **Prompting-based methods:** low precision
 - \rightarrow correcting FP cases from initial predictions
- Models resort to plausible yet incorrect predictions with a small margin
 > verification as post-hoc



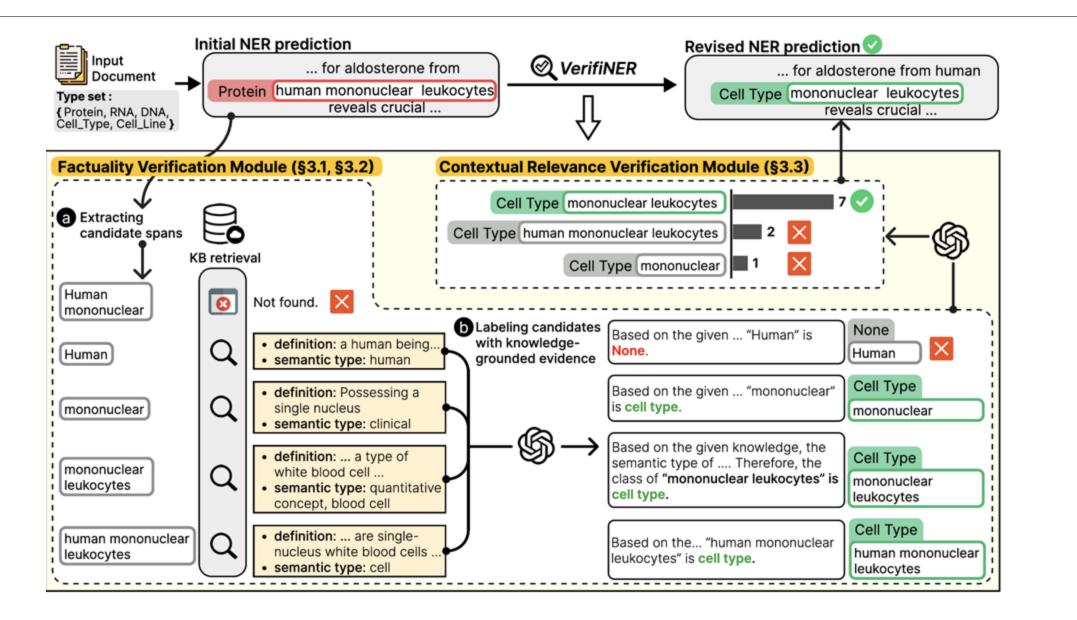
Gold annotation: "... cell adhesion to cytokine-stimulated [endothelial cells]cell_type by .."

Category	Error type	Definition	Example
	Туре	Wrong type is assigned to an entity	" cell adhesion to cytokine-stimulated [endothelial cells] cell_line by"
FP	Span	Predicted span partially overlaps with ground truth, but incorrect	" cell adhesion to [cytokine-stimulated endothelial cells] cell_type by"
			" cell adhesion to [cytokine-stimulated endothelial cells] cell_line by"
	Spurious	A completely incorrect entity is predicted where gold annotation does not exist	" [cell adhesion] cell_line to cytokine-stimulated endothelial cells by"
FN	Missing	A gold annotation for entity exists but not predicted by a model	" cell adhesion to cytokine-stimulated endothelial cells by"



External knowledge could be a valuable and effective source for verification.

VerifiNER: An Overview



VerifiNER: Span & Type Factuality Verification

- Extract and verify all the candidate spans with
 - If the entity exist in the KB, extract all the related information from the KB
- Re-assign entity types
 - knowledge does not guarantee explicit
 implications to entity types
 - leverage the reasoning ability of LLMs

Knowledge-grounded Evidence

Entity candidate: mononulcear leukocytes Source knowledge: [Definition] A white blood cell that lacks cytoplasmic granules with an affinity for specific biological stains [Semantic type] Quantitative Concept, Blood Cell Generated evidence: Based on the given knowledge, the definition of "mononulcear leukocytes" refers to a white blood cell that lacks cytoplasmic granules ... Also the semantic type of mononulcear leukocytes is associated with cell_type.

VerifiNER: Context Relevance Verification

- Select a final type based on the context
 - semantically relevant to the input context
 - knowledge-grounded evidence is aligned well with the context
- Sample multiple reasoning paths to reflect the related context
 - employ self-consistency to find the most
 plausible votes

Contextual Relevance Verification

Entity candidates:

mononuclear leukocytes, human mononuclear leukocytes, mononuclear

Reasoning Path 1:

Based on the provided evidence,"mononuclear leukocytes" refers to ... This aligns with the context, that it plays a crucial role in immune responses... Therefore, **"mononuclear leukocytes"** is the correct entity in this context as it provides both generality and comprehensiveness, accurately identifying the type of immune cells.

... Reasoning Path N:

...the context is focused on human biology and immune responses. By specifying "human mononuclear leukocytes," it clarifies that the experiment pertains to leukocytes from humans ... Therefore, "human mononuclear leukocytes" is the correct entity in this context as it provides both specificity and avoidance of ambiguity.

Consistency Voting: mononuclear leukocytes : 7 (final selection) human mononuclear leukocytes : 2 mononuclear : 1

Main Results

Mathada		GE	NIA		BC5CDR				
Methods	Р	R	F1	$\Delta F1$	Р	R	F1	$\Delta F1$	
GPT-NER (Wang et al., 2023a)	56.44	42.15	48.26	-	79.84	47.48	59.55	-	
+ Manual Mapping	37.53	32.65	34.93	-13.33	51.82	36.98	43.16	-16.39	
+ LLM-revision	52.97	46.77	49.68	+1.42	77.21	44.53	56.48	-3.07	
+ LLM-revision w/ CoT	53.57	44.54	48.64	+0.38	76.49	44.91	56.59	-2.96	
+ VERIFINER (Ours)	72.37	44.95	55.46	+7.20	91.01	46.92	61.92	+2.37	
ConNER (Jeong and Kang, 2023)	74.13	96.69	83.92	-	84.90	96.47	90.32	-	
+ Manual Mapping	43.62	94.50	59.69	-24.23	53.98	94.52	68.71	-21.61	
+ LLM-revision	63.64	86.64	73.38	-10.54	80.35	93.07	86.25	-4.07	
+ LLM-revision w/ CoT	64.85	86.92	74.28	-9.64	78.14	92.99	84.92	-5.40	
+ VERIFINER (Ours)	79.07	91.82	84.97	+1.05	94.77	91.61	93.16	+2.84	
BioBERT (Lee et al., 2019)	54.51	65.30	59.42	-	79.93	95.98	87.22	-	
+ Manual Mapping	30.57	24.39	27.14	-32.28	38.65	65.78	48.69	-38.53	
+ LLM-revision	52.63	65.01	58.17	-1.25	60.79	77.74	68.23	-18.99	
+ LLM-revision w/ CoT	52.21	63.49	57.30	-2.12	59.43	78.66	67.71	-19.51	
+ VERIFINER (Ours)	77.45	67.75	72.31	+12.89	94.02	91.17	92.57	+5.35	

Consistently outperforms baseline methods intermediate reasoning process is important to bridge the gap between the retrieved knowledge and model predictions Recall is a little lower

Source \rightarrow Target	BC5C	$\textbf{BC5CDR} \rightarrow \textbf{GENIA}$		$\textbf{GENIA} \rightarrow \textbf{BC5CDR}$		DR Source \rightarrow Target		$\mathbf{IA'} \to \mathbf{G}$	ENIA	BC5C	$\mathbf{DR}' \to \mathbf{B}$	C5CDR	
Source / Tanget	Р	R	F1	Р	R	F1		Р	R	F	Р	R	F
GPT-NER	56.44	42.15	48.26	79.84	47.48	59.55	GPT-NER	56.44	42.15	48.26	79.84	47.48	59.55
ConNER + VERIFINER	N/A 58.15	N/A 77.42	N/A 66.42	N/A 76.74	N/A 57.42	N/A 65.69	ConNER + VERIFINER	69.97 74.16	94.10 90.03	80.26 81.48	81.46 94.28	89.47 85.42	85.28 89.63
BioBERT + VERIFINER	N/A 66.49	N/A 87.25	N/A 75.47	N/A 77.64	N/A 71.17	N/A 74.27	BioBERT + VERIFINER	35.36 78.91	64.50 69.68	45.68 74.01	61.75 94.16	69.95 71.65	65.59 81.38

VerifiNER can further improve the performance of fine-tuned models

Outline

- Overview
- Entity Typing
 - Knowledge-based Entity Typing
 - Ontology-guided Entity Typing
- Relation Extraction
- Comprehensive Knowledge Structuring

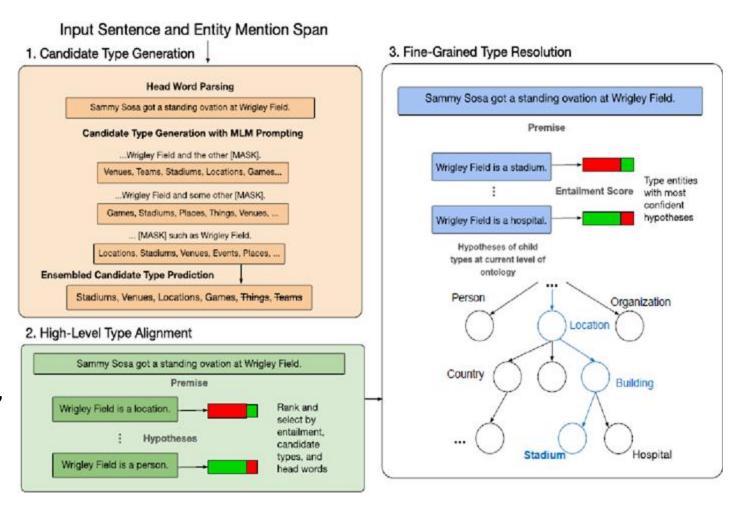
OntoType: Ontology-guided Typing

- Zero-shot entity typing: Assigns fine-grained semantic types to entities without any annotations
 - Ex. Sammy Sosa [Person/Player] got a standing ovation at Wrigley Field [Location/Building/Stadium]
- Challenges of weak supervision based on masked language model (MLM) prompting
 - A prompt generates a set of tokens, some likely vague or inaccurate, leading to erroneous typing
 - □ Not incorporate the rich structural information in a given, fine-grained type ontology
- OntoType: Ontology-guided, Annotation-Free, Fine-Grained Entity Typing
 - □ Ensemble multiple MLM prompting results to generate a set of type candidates
 - Progressively refine type resolution, from coarse to fine, following the type ontology, under the local context with a natural language inference model

Tanay Komarlu, et al., "OntoType: Ontology-Guided and Pre-Trained Language Model Assisted Fine-Grained Entity Typing", KDD'24

Overall Framework of OntoType : Three Steps

- Candidate type generation
 - Candidate type generation with multiple MLM prompting
 - Ensembled candidate type prediction
 - Ex. Stadium, venue, location, games, things, teams
- High-level type alignment by entailment (local context + NLI)
- Progressively refine type resolution, from coarse to fine, following the type ontology
- Type ontology used at every step



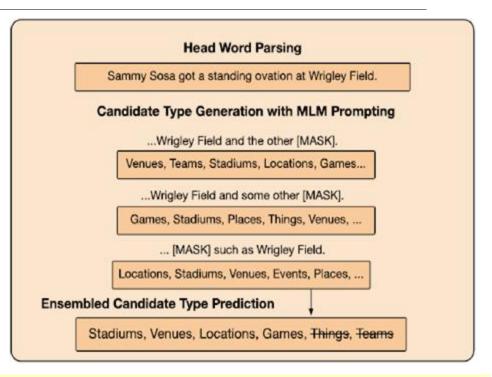
OntoType: Step 1 - Candidate Type Generation

Head Word Parsing

- Mention's head word in the input text is often the cue that explicitly matches a mention to its type
- Ex. "Governor Arnold Schwarzenegger gives a speech ..."
- Use the Stanford Dependency Parser to extract head word
- Leverage the head words of the input entity to select an initial context-sensitive coarse-grained type

Ensembled MLM Prompting

- Leverage a BERT MLM and Hearst patterns to generate candidate types for the target mentions
- Ensemble *n* patterns to generate the best candidate types
- Consolidated candidates are generated by a majority of Hearst patterns
 - □ Ex. For e_1 , "Stadiums, Venues, Locations, Games" retain, but the noisy types "Things" and "Teams" are removed

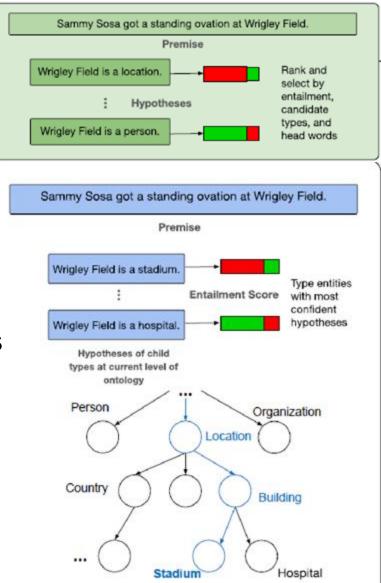


Four Hearst Patterns give the highest quality hypernyms with simple type mapping on the

OntoNotes dataset							
Hearst Pattern	Prec	Rec	F1				
[MASK] such as	53.3	72.4	61.4				
such [MASK] as	47.9	68.7	56.5				
and some other [MASK]	48.8	66.6	56.4				
and the other [MASK]	47.6	68.3	56.1				

OntoType: Steps 2 & 3- High-Level Type Resolution & Progressive Type Refinement

- High-level type alignment by entailment
 - Align generated candidate types to several high-level types in the type ontology by Word2Vec+ cosine similarity
 - Then select the most accurate high-level types with a pretrained entailment language model (NLI)
- Progressively refine type resolution, from coarse to fine, following the type ontology
 - Ex. At the 2nd level of ontology, it generates the hypotheses and ranks all child types of "location"
 - This consolidates and selects "building" as the highest ranked label
 - At a deeper level, it selects the final type "stadium"
- Type ontology is used at every step



OnEFET: Ontology Enrichment for FET

- Task: Zero-shot fine-grained entity typing (Zero-shot FET)
 - □ **Input:** a sentence with a given entity mention

Insufficient world knowledge

person

Nested entity span identification

/person/lawyer X

Type I

Type II There's a common widespread misconception that people who are

Type III

The 33-year-old Billings native enlisted as a military veterinarian.

S

exonerated can just go in and get a bunch of money, said Lara.

Eight people are suspected of operating a trafficking ring for interstate prostitution from a Korean nightclub in Federal Way.

(GR

/location ¥

/location/city

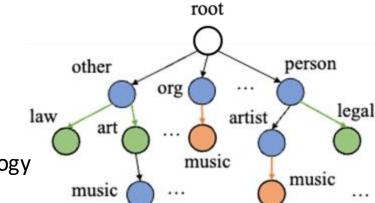
Incorrect inference of finegrained levels

(person/soldier X

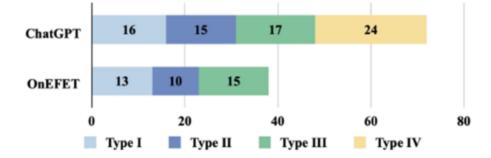
/location/city

Output: the entity type label from a predefined set of types

Usually organized as a structure — ontology



- Directly prompting LLMs (GPT) cannot handle Zero-shot FET
 - Nuanced semantic relations as ontology goes deeper and types become more fine-grained
 - Contextualized information



Siru Ouyang, et al., "Ontology Enrichment for Effective Fine-grained Entity Typing", KDD'24

Overall Framework of OnEFET : Three Steps

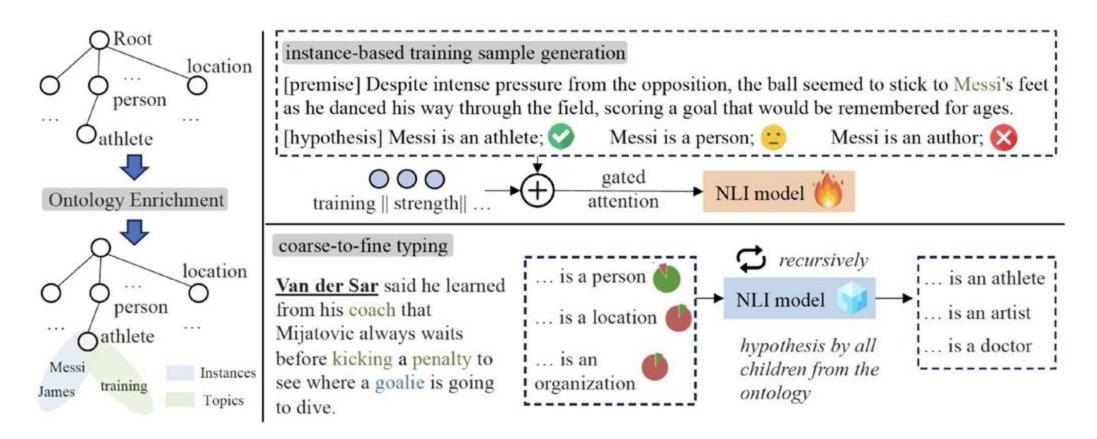


Figure 1: OnEFET framework. The left part is the ontology enrichment for instance and topic information. Then we leverage instances to generate pseudo-training data. Together with topics, we train an NLI model, which will support coarse-to-fine typing during the inference stage.

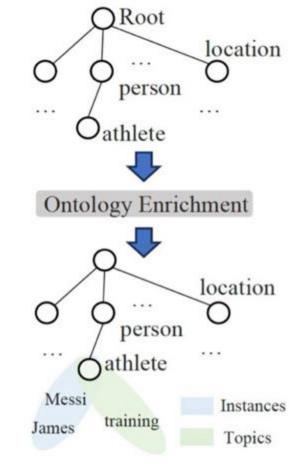
OnEFET: Step 1 – Ontology Enrichment

Enrichment for topic information

- Providing entity type T, first select 20 related documents in Wikipedia using Elastic search.
 - □ Filtering out noisy documents and reduce memory usage
- SeeTopic [1] for out-of-vocabulary topic words/phrases mining
- Enrichment for instance information
 - LM-based instance seeds curation in question-answering style [2]
 - Providing entity type T, first retrieve related sentences in Wikipedia.
 - QA template: [CLS] What is the instance of <T> in this sentence? [SEP] <Sentence> [SEP]
 - SECoExpan [3] for instance expansion

[1] Zhang, Yu, et al. "Seed-guided topic discovery with out-of-vocabulary seeds." NAACL 2022.[2] Jiao, Yizhu, et al. "Open-vocabulary argument role prediction for event extraction." EMNLP 2022 Findings.

[3] Zhang, Yu, et al. "Entity Set Co-Expansion in StackOverflow." Big Data 2022.



OnEFET: Steps 2 & 3 – Coarse-to-fine Typing

- Instance information \rightarrow contextualized training samples for each fine-grained types
 - Leverage language model to generate a sentence that contain instance e of a specific

type

 $\square \quad \text{Rewarding and paneling include} \quad \sum_{j=1}^{|V|} \exp(l_j/\omega) \quad \omega = \begin{cases} \tau \alpha \\ \text{LM} \\ \tau \beta \\ \tau \beta \\ \tau \end{cases} \quad \text{esc}^{x_i \in \mathbf{x}_{<i}} \text{for diversity} \\ \tau \\ \text{else} \end{cases}$

Artist	Instance: Leonardo Da Vinci Topic information: creativity, art history, style, etc. Generated Context: The painting depicts Christ on his way to Calvary, surrounded by angels who are carrying him up into heaven. It has been dated between 1475 and 1480. According to art historian Jos Mareda, it shows "the influence of Leonardo da Vinci", but also that "of Giotto".
Cemetery	Instance: Cenotaph Topic information: tombstones, grave markers, cremation, etc. Generated Context: During her visit to Paris, Emily made sure to explore the famous Père Lachaise, where notable figures such as Oscar Wilde and Jim Morrison were laid to rest.
Sports team	Instance: The New York Yankees Topic information: training, games, rivalries, etc. Generated Context: October 5, 2013: In the final game played at Yankee Stadium, the New York Yankees defeat the Oakland Athletics 7-3 behind four home runs from Alex Rodriguez and six RBI from Mark Teixeira.

OnEFET: Performance Study

Use 3 benchmark FET datasets: BBN, Ontonotes, and FIGER:

Transferability test on UFET

Ρ

R

F1

Models		FIGE	R	OntoNotes			BBN		
	Acc.	Micro-F1	Macro-F1	Acc.	Micro-F1	Macro-F1	Acc.	Micro-F1	Macro-F1
Fully / distantly-supervised Setting									
AFET (Ren et al., 2016)	55.3	66.4	69.3	55.1	64.7	71.1	67.0	73.5	72.7
UFET (Choi et al., 2018)	-	-	-	59.5	71.8	76.8	-	-	-
BERT-MLMET (Dai et al., 2021)	-	-	-	67.4	80.4	85.4	-	-	-
LITE (Li et al., 2022)	-	83.3	86.7	-	80.9	86.4	-	-	-
Zero-Shot Setting									
ProtoZET (Ma et al., 2016b)	29.6	56.4	55.1	28.1	34.5	33.7	25.1	63.1	58.2
OTyper (Yuan and Downey, 2018)	47.2	67.2	69.1	31.8	36.0	39.1	29.0	48.8	54.4
ZOE (Zhou et al., 2019)	58.8	71.3	74.8	50.7	60.8	66.9	61.8	74.9	74.6
DZET (Obeidat et al., 2019)	28.5	56.0	55.1	23.1	28.1	27.6	-	-	-
MZET (Zhang et al., 2020)	31.9	57.9	55.5	33.7	43.7	42.3	29.4	68.7	60.6
ChatGPT* (Ouyang et al., 2022)	51.7	65.3	58.3	27.7	37.5	32.6	25.1	55.9	50.7
OntoType (Komarlu et al., 2023)	49.1	67.4	75.1	65.7	73.4	81.5	-	-	-
OnEFET	56.3	72.7	78.6	68.6	76.3	83.4	68.5	80.1	81.7

supervised setting			
MLMET [8]	53.6	45.3	49.1
LITE [20]	52.4	48.8	50.6
zero-shot setting			
direct NLI	1.5	7.1	2.5
direct OnEFET	7.2	17.5	10.2
OnEFET	31.4	53.1	39.5

Ablation Study

ennervised setting

Model

Model	Acc.	Micro-F1	Macro-F1
OnEFET	68.6	76.3	83.4
w/o topics	67.0	74.1	81.9
w/ 3 instances	59.8	70.5	75.6
w/o coarse-to-fine	67.5	75.7	82.1
w/o GCE loss	66.4	74.5	81.6

- OnEFET significantly outperform previous baseline models; on par with supervised settings.
- OnEFET could be smoothly transferred to unseen settings, even with more entity types

Outline

- Overview
- Entity Typing
- Relation Extraction
 - Supervised Relation Extraction
 - Weakly-Supervised Relation Extraction
 - Synthesis-Based Relation Extraction
 - Reasoning-Based Relation Extraction
- Comprehensive Knowledge Structuring

Relation Extraction

Relationship extraction (RE): A subtask of **information extraction**

- Detect and classify semantic relationship mentions within a set of artifacts from text (e.g., <Bill Clinton, LocatedIn, New York>)
- Typically, determine a relationship between two distinct entities from text, producing fact triples in the form [head, relation, tail] or [subject, predicate, object]
- Datasets: Researchers have constructed multiple datasets for benchmarking relation extraction methods, e.g., infoboxes, RDF trips, freebase (WikiData), and WordNet
 - Ex. UMLS (Unified Medical Language System) (NLM) defines 134 subject categories, entity types and 54 relations
 - Ex. TACRED (Zhang, 2017): 106K+ examples of relation triples (41 relations)
- Relation extraction benefits natural language understanding in many ways
 - Ex. Knowledge graph construction, question answering, text classification, event discovery, coreference, ...

Outline

- Span Detection
- Entity Typing
- Relation Extraction
 - Supervised Relation Extraction
 - Weakly-Supervised Relation Extraction
 - Synthesis-Based Relation Extraction
 - Reasoning-Based Relation Extraction
- Comprehensive Knowledge Structuring

Document-Level Relation Extraction

- Document-level relation extraction (DocRE)
 - Extract semantic relations among entity pairs in a document
- Blindly considering the full document?
 - A subset of the sentences in the doc ("evidence") should often be sufficient to identify the relation
- An evidence-enhanced DocRE framework: EIDER
 - Efficiently extracts evidence and effectively leverages the extracted evidence to improve DocRE
- Using a document-level relationship extraction dataset DocRED (2019)
- Relation extraction benefits natural language understanding in many ways
 - Ex. Knowledge graph construction

Head: Hero of the Day	Tail: the United	States	Rel:[country	of origin]
GT evidence sentence	es: [1,10]	Extra	cted eviden	ce: [1,10]

Original document as input: [1] Load is the sixth studio album by the American heavy metal band Metallica, released on June 4, 1996 by Elektra Records in the United States ... [9] It was certified 5×platinum ... for shipping five million copies in the United States. [10] Four singles—"Hero of the Day", "Until It Sleeps", "Mama Said", and "King Nothing" — were released as part of the marketing campaign for the album. Prediction scores: NA: 17.63 country of origin: 14.79

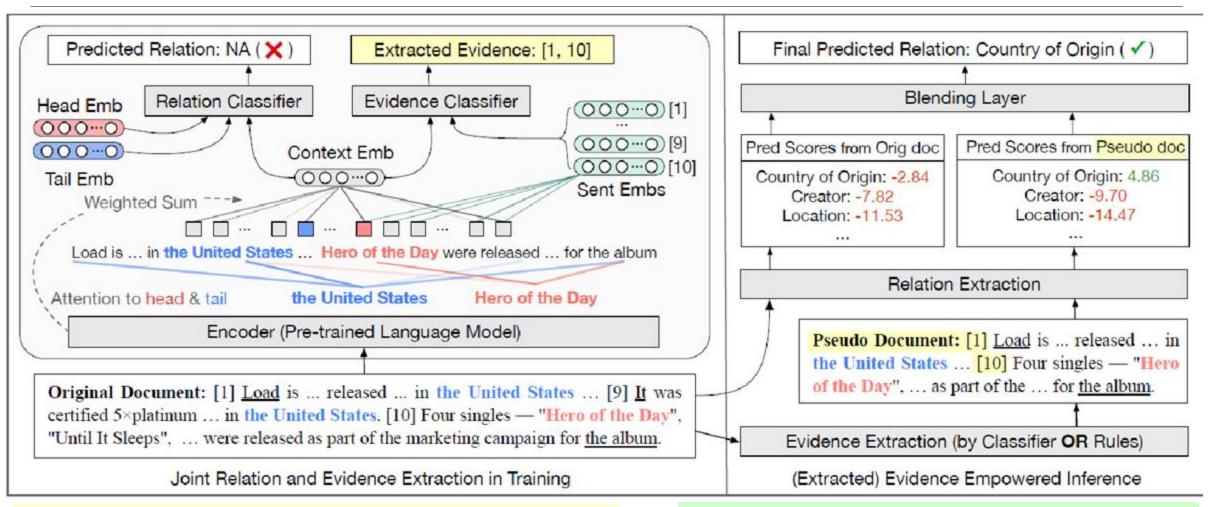
Extracted evidence as input:[1] Load is the sixth studioalbum... released... in the United States... [10] Four singles— "Hero of the Day",... were released... for the album.Prediction scores:country of origin:18.31NA:13.45

Final prediction of our model: country of origin (✓)

Only need [1]+[10] to identify [head, relation, tail]

Yiqing Xie, Jiaming Shen, Sha Li, Yuning Mao, Jiawei Han, "<u>EIDER: Evidence-enhanced Document-level Relation</u> <u>Extraction</u>", ACL'22 Findings

EIDER Architecture



The left part (the training stage), we jointly extract relation and evidence using multi-task learning, where the two tasks have their own classifier and share the base encoder The right part (the inference stage), we fuse the predictions on the original document and the extracted evidence using a blending layer

Typed Entity Marker (punct)

□ Focused on sentence-level binary RE

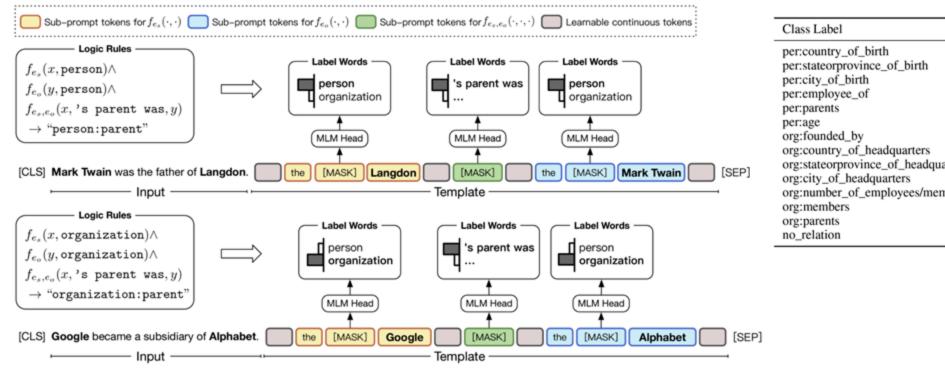
Compared different methods to mark the head and tail entities and inject the entity type knowledge for better RE

Method	Input Example	BERT _{BASE}	BERTLARGE	RoBERTa _{LARGE}
Entity mask	[SUBJ-PERSON] was born in [OBJ-CITY].	69.6	70.6	60.9
Entity marker	[E1] Bill [/E1] was born in [E2] Seattle [/E2].	68.4	69.7	70.7
Entity marker (punct)	@ Bill @ was born in # Seattle #.	68.7	69.8	71.4
Typed entity marker	(S:PERSON) Bill (/S:PERSON) was born in	71.5	72.9	71.0
	$\langle O:CITY \rangle$ Seattle $\langle /O:CITY \rangle$.			
Typed entity marker (punct)	@ * person * Bill @ was born in # \wedge city \wedge Seattle #.	70.9	72.7	74.6

Wenxuan Zhou, Muhao Chen, "An Improved Baseline for Sentence-level Relation Extraction", AACL'22

PTR

Specialized and semantically meaningful templates for each class for prompt tuning
 For binary RE, one sub-prompt for each entity and one sub-prompt for relation



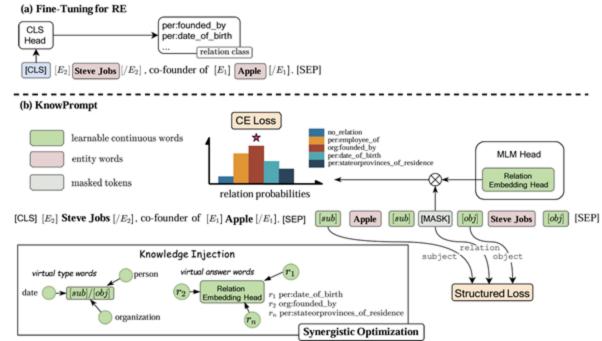
Class Label	[MASK] ₁	[MASK] ₂	[MASK] ₃
per:country_of_birth per:stateorprovince_of_birth per:city_of_birth per:employee_of per:parents per:age org:founded_by org:country_of_headquarters org:stateorprovince_of_headquarters org:city_of_headquarters org:number_of_employees/members org:members org:parents	person person person person organization organization organization organization organization organization organization organization	was born in was born in was born in 's employee was 's parent was 's age was was founded by was located in was located in was located in 's employer has 's member was 's parent was	country state city organization person number person country state city number organization organization
no_relation	entity	is irrelevant to	entity

Xu Han, Weilin Zhao, Ning Ding, Zhiyuan Liu, Maosong Sun, "PTR: Prompt Tuning with Rules for Text Classification", AI Open

KnowPrompt

Leveraged virtual type words and virtual answer words for prompt tuning

- Injected prior knowledge about the subjects, objects, and relations for virtual token initialization
- Utilized implicit structure constrained loss for prompt optimization



Xiang Chen, Ningyu Zhang, Xin Xie, Shumin Deng, Yunzhi Yao, Chuanqi Tan, Fei Huang, Luo Si, Huajun Chen, "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction", WWW'22

Outline

- Span Detection
- Entity Typing
- Relation Extraction
 - Supervised Relation Extraction
 - Weakly-Supervised Relation Extraction
 - Synthesis-Based Relation Extraction
 - Reasoning-Based Relation Extraction
- Comprehensive Knowledge Structuring

Corpus-Level Relation Extraction

- Utilized additional representation of relation triple for initial weak supervision extraction and latent clustering for further denoising
- Applied further prompt tuning for context understanding and pattern generalization

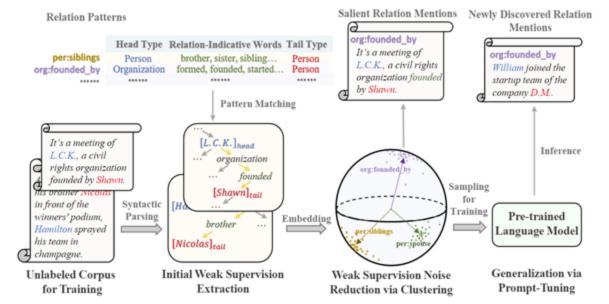


Fig. 2. Framework overview. Our model mainly consists of three steps: (1) relation triple representation extraction, (2) latent space clustering, and (3) prompt-tuning with sub-prompts.

Sizhe Zhou, Suyu Ge, Jiawei Han, "Corpus-Based Relation Extraction by Identifying and Refining Relation Patterns", ECMLPKDD'23

Corpus-Level Relation Extraction: Experiment

- Leading low-resource performance
- Each component is indispensable
 - Weak supervision provides relatively high recall
 - Clustering provides relatively high precision
 - Prompt-tuning is important for boosting recall

Model	TACRED			TACREV			ReTACRED					
K	4	8	16	Mean	4	8	16	Mean	4	8	16	Mean
w/ weak supervision								200.000				-
EXACT MATCHING*	-	-	-	48.87	-	-	-	53.67	-	-	-	54.86
COSINE	23.28	26.60	37.16	29.01	21.43	30.85	41.21	31.16	28.12	35.00	44.54	35.89
COSINE*	-	3	-	58.88	-	-	-	60.80	-		-	68.59
RCLUS NOISY	45.35	50.94	55.73	50.67	50.41	61.67	66.85	59.64	56.89	65.81	71.09	64.60
RCLUS BALANCED	45.19	55.71	59.33	53.41	55.36	58.74	64.56	59.55	53.84	65.27	71.03	63.38
RCLUS	49.89	56.65	60.26	55.60	56.94	63.75	66.50	62.40	61.03	68.78	72.23	67.35
w/ ground truth supervision												
FINE-TUNING	13.62	26.09	32.07	23.93	18.75	25.21	35.12	26.36	17.36	31.77	42.63	30.59
GDPNET	13.79	28.42	43.11	28.44	15.61	24.59	42.12	27.44	19.20	35.79	52.84	35.94
PTR	39.16	49.46	54.67	47.76	47.18	51.58	59.17	52.64	51.27	62.60	71.11	61.66

Model	TACREV					
Wodel	Precision	Recall	F_1			
RCLUS						
w/ Weak	59.30	49.02	53.67			
w/ Prompt	48.25	75.73	58.95			
w/ Weak + Prompt	58.80	72.07	64.76			
w/ Weak + Cluster	63.62	40.61	49.57			
w/ Weak + Cluster + Prompt	60.76	74.29	66.85			
w/ Weak + Cluster + Prompt*	57.85	78.47	66.61			

Table 1. F_1 scores (%) on full test set with different sizes (K = 4, 8, 16) for each relation label.

Chemical Reaction Extraction with Weak Supervision

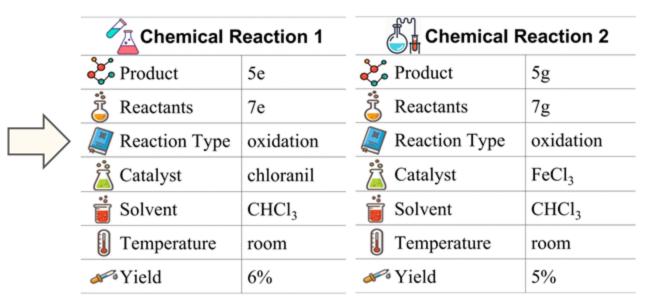
- Task: Chemical Reaction Extraction
 - Goal: Extract chemical reactions from a scientific paper
 - Input: A scientific paper
 - Output: Multiple structured chemical reactions

目:	\bigcirc	7
19:		1
	= X0	() ()

Scientific

Paper

... The methyl-substituted porphyrinogens ($\underline{7e}$ and 7f) were <u>oxidized</u> with <u>chloranil</u>, and mesounsubstituted porphyrinogens ($\underline{7g}$ and 7h) were oxidized with 0.1% aqueous <u>FeCl₃</u> in <u>CHCl₃</u> at <u>room</u> temperature to obtain 16π -conjugated systems <u>5e</u> in <u>6%</u>, 5f in 7%, <u>5g</u> in <u>5%</u>, and 5h in 4% yields. ...

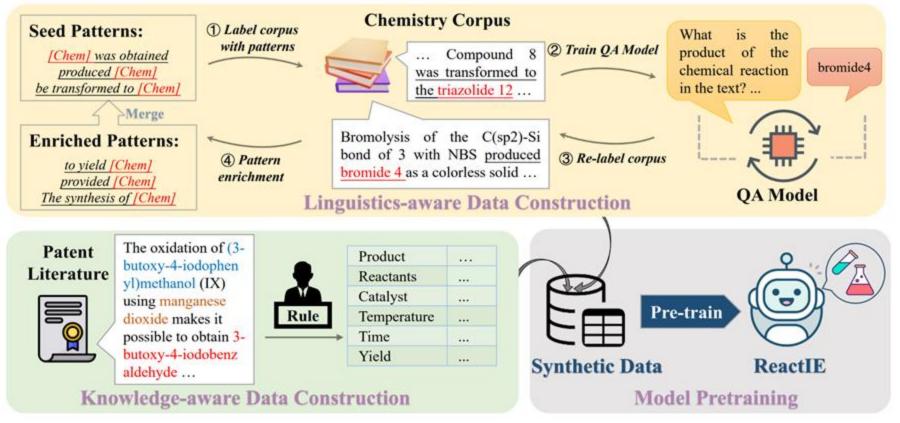


Ming Zhong, Siru Ouyang, Minhao Jiang, Vivian Hu, Yizhu Jiao, Xuan Wang, Jiawei Han, "ReactIE: Enhancing Chemical Reaction Extraction with Weak Supervision", ACL'23 Findings

Chemical Reaction Extraction with Weak Supervision

Method: ReactIE

- Linguistic cues
- Domain Knowledge



Chemical Reaction Extraction with Weak Supervision

Result for Product Extraction

Models	P (%)	R (%)	F (%)						
Uns	upervised								
Opsin	18.8	5.4	8.4						
ReactIE	69.7	53.5	60.5						
Supervised									
BILSTM	52.4	46.7	49.4						
BILSTM (w/ CRF)	54.3	49.1	51.6						
BERT	78.8	56.8	66.0						
BIOBERT	76.4	61.3	68.0						
CHEMBERT	84.6	69.4	76.2						
FLANT5	88.0	83.2	85.5						
ReactIE	94.2	88.2	91.1						
- linguistics cues	89.8	84.7	87.2						
- domain knowledge	92.6	87.1	89.8						

Result for Role Extraction

Models	P (%)	R (%)	F (%)
BERT	69.2	69.2	69.2
BIOBERT	73.3	75.5	74.3
CHEMBERT	77.0	76.4	76.7
CHEMRXNBERT	79.3	78.1	78.7
FLANT5	76.1	75.4	75.8
ReactIE	80.8	82.5	81.6
- linguistics cues	78.1	83.3	80.6
- domain knowledge	74.8	79.8	77.2

Case Study

Input Text: It is worth mentioning that when the reaction of 2-cyano-N,N-dimethylethanethioamide (1s) with 3-phenylpropiolaldehyde (2a) was carried out at room temperature under nitrogen for 5 h, an aldol condensation product 5a was isolated in 73% yield, which can be further converted to 2-aminothienyl ether 3sa in 85% yield under the optimized reaction conditions.

ReactIE (Significant Error)	GPT-4 (Minor Issue) Reaction 1	Reaction Miner (Perfect)
Reaction 1:		Reaction 1
Product: 5a	Product: aldol condensation product 5a	Product: 5a
Reactants: (1s), (2a),	Reactant: 2-cyano (1s)	Reactant: 2-cyano (1s), 3 (2a)
Reaction type: aldol condensation-	Reactant: 3 (2a)	Atmosphere: nitrogen
Catalyst: nitrogen	Atmosphere: nitrogen	Reaction type: aldol condensation
Temperature: room	Temperature: room temperature	Temperature: room temperature
Time: 5 h	Time: 5 h	Time: 5 h
Yield: 73%	Yield: 73% (aldol condensation product 5a)	Yield: 73% (5a)
Reaction 2:	Reaction 2	Reaction 2
Product: 3sa	Product: 2-aminothienyl ether 3sa	Product: 2-aminothienyl ether 3sa
Reactants: (1s), (2a),	Reaction type: optimized reaction	Reactant: 5a
Yield: 85%	Yield: 85% (2-aminothienyl ether 3sa)	Yield: 85% (2-aminothienyl ether 3sa)

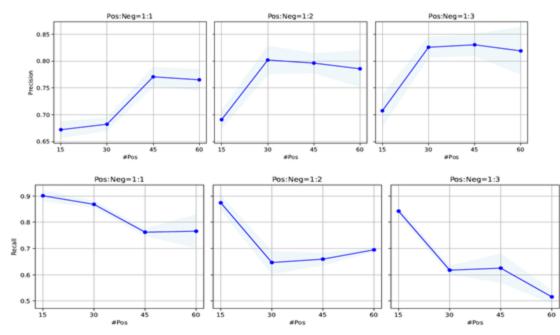
Outline

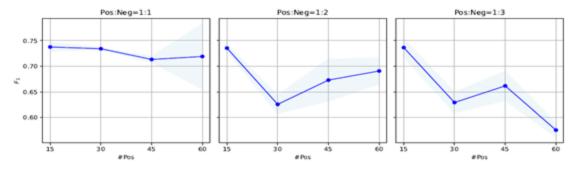
- Span Detection
- Entity Typing
- Relation Extraction
 - Supervised Relation Extraction
 - Weakly-Supervised Relation Extraction
 - Synthesis-Based Relation Extraction
 - Reasoning-Based Relation Extraction
- Comprehensive Knowledge Structuring

LLM for Zero-Shot Relation Extraction

Prompting for more synthetic data

- □ Larger $\#p\&n \text{ or larger } n:p \text{ ratio } \rightarrow higher precision and lower recall}$
- More positive seeds does not bring proportionally larger positive pattern coverage compared to randomly sampled negative seeds → Positive predictions concentrated on dominant positive patterns

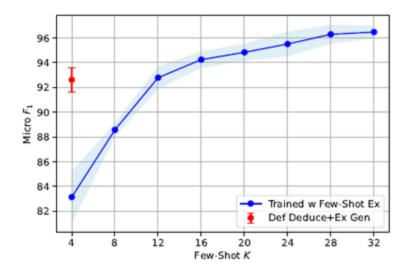




Sizhe Zhou, Yu Meng, Bowen Jin, Jiawei Han, "Grasping the Essentials: Tailoring Large Language Models for Zero-Shot Relation Extraction", arXiv preprint arXiv:2402.11142 (2024)

LLM for Zero-Shot Relation Extraction

- Commonly adopted RE few-shot setup can be converted to definition-oriented setup while achieving much better results
 - Derive-and-then-generate extends the patterns conveyed by few-shot instances
 - Coverage of derived definitions is limited by the coverage of few-shot instances

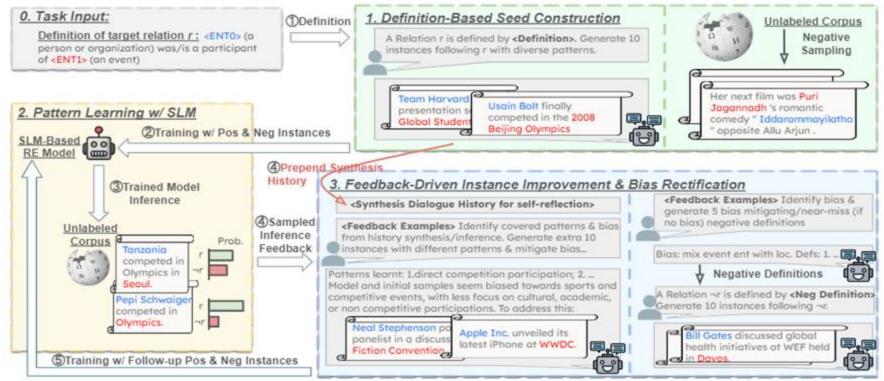


Gold Definition	Gold Few-Shot Instances For Derivation	Derived Definition
<ent1> was/is the occupation of <ent0> (a person)</ent0></ent1>	 <ent0>Pierre Maudru</ent0> (1892\u20131992) was a French <ent1>screenwriter</ent1>. Goble p.189 He also directed three films. WWF Hall of Famer Bob Backlund and Extreme Championship Wrestling <ent1>manager</ent1> <ent0>Bill Alfonso</ent0> also made surprise appearances during the event. In May 2010, Paratici moved from Sampdoria to Juventus, along with Director General Giuseppe Marotta and <ent1>Manager</ent1> <ent0>Luigi Delneri</ent0>. <ent0>Else Reval</ent0> (14 June 1893 \u2013 25 January 1978) was a German <ent1>film actress</ent1>. 	<ent1> is the profession in which <ent0> (a per- son) works or has worked.</ent0></ent1>
<ent0> (a person or organization) was/is a participant of <ent1> (an event)</ent1></ent0>	 He only saw limited action in <ent1>Euro 2000</ent1> as cover for left - back <ent0>Arthur Numan</ent0>. <ent0>Francesco Cameli</ent0> was a sailor from Italy, who represented his country at the <ent1>1928 Summer Olympics</ent1> in Amsterdam, Netherlands. <ent0>Giannin Andreossi</ent0> (born July 2, 1902, date of death unknown) was a Swiss ice hockey player who competed in the <ent1>1928 Winter Olympics</ent1>. <ent0>Ren\u00e9 Sch\u00f6fisch</ent0> (born February 3, 1962) is a German speed skater who competed for East Germany in the <ent1>1984 Winter Olympics</ent1>. 	<ent1> is the major international sports competition in which <ent0> (an athlete) has competed.</ent0></ent1>

RePAL

Leverage relation definitions for LLM-based instance synthesis

Train SLM as relation extractors with its inference on unlabeled corpus as feedback for iterative instance synthesis (LLM's self-reflection on synthesis history and both the inference feedback)



Experimental Results

- Synthesis or pattern knowledge distillation from LLMs is a promising way to boost the RE performance under zero-shot setting
- For better synthesis, LLMs should be fully comprehend the complicated semantics of target relations and LLMs should be guided to explore different relation patterns (especially long-tail patterns)

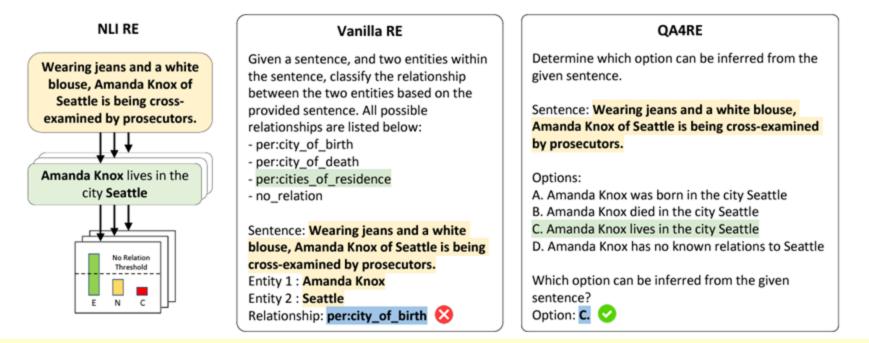
Madal		DefOn-	FewRel		DefOn-Wiki-ZSL					
Model	Precision	Recall	F ₁	Macro-F1	Precision	Recall	F_1	Macro-F1		
Fully-Supervised ROBERTA NLI	79.36	<mark>98.4</mark> 6	86.99	71	68.66	97.14	78. <mark>4</mark> 6			
Zero-Shot										
RANDOM GUESS	7.14	50.77	12.52	7	6.67	51.01	11.67			
GPT-3.5	55.09	61.81	53.94	-	42.64	45.70	39.60	-		
ROBERTA NLI	48.79	81.17	55.07	-	36.23	62.65	35.28	-		
ZS-BERT	35.91	35.70	-	35.78	37.11	33.85	-	35.26		
RELATIONPROMPT	74.39	66.89	-	67.78	71.89	60.50	-	61.08		
RE-MATCHING	77.49	72.95	-	75.11	73.10	68.99	-	70.97		
REPAL (Ours)	71.17	82.34	73.02	88.44	62.12	52.99	48.17	81.25		

Outline

- Span Detection
- Entity Typing
- Relation Extraction and Event Extraction
 - Supervised Relation Extraction
 - Weakly-Supervised Relation Extraction
 - Synthesis-Based Relation Extraction
 - Reasoning-Based Relation Extraction
- Comprehensive Knowledge Structuring

Aligning Instruction Tasks w/ Relation Extraction

- Hypothesized that instruction-tuning has been unable to elicit strong RE capabilities in LLMs due to RE's low incidence in instruction-tuning datasets, making up less than 1% of all tasks
- □ Formulating RE as multiple-choice QA and applying entity types as constraints



Kai Zhang, Bernal Jiménez Gutiérrez, Yu Su, "Aligning Instruction Tasks Unlocks Large Language Models as Zero-Shot Relation Extractors", ACL'23 Findings

Experimental Results

QA4RE Achieved consistently better performance in few-shot and zero-shot settings

Illustrated a promising way of adapting LLMs to underrepresented tasks by alignments

K=8 K=16 K=32

29.3

32.9

34.9

58.7

50.5

33.9

36.8

35.0

65.7

48.1

K=4

9.0

26.8 30.2

64.2

51.2

46.2

62.0

21.2

30.0

33.7

64.7

47.3

Meth	ode	Т	ACRE	D	RE	TACR	ED	Т	ACRE	v	S	emEva	I	Avg.		
Meth	lous	Р	R	F1	Р	R	F1	Р	R	F1	Р	R	F1	F1		
Baselines																
NLIBART		42.6	65.0	51.4	59.5	34.9	44.0	44.0	74.6	55.3	21.6	23.7	22.6	43.3		
NLI _{RoBERT}	a	37.1	76.9	50.1	52.3	67.0	58.7	37.1	83.6	51.4	17.6	20.9	19.1	44.8		
NLI DeBERT	a	42.9	76.9	55.1	71.7	58.3	64.3	43.3	84.6	57.2	22.0	25.7	23.7	50.1		
SuRE _{BART}		13.1	45.7	20.4	17.9	34.6	23.6	14.1	52.3	22.2	0.0	0.0	0.0	16.5		
SuREPEGAS	SUS	13.8	51.7	21.8	16.6	34.6	22.4	13.5	54.1	21.6	0.0	0.0	0.0	16.4		
GPT-3.5 S	eries															
ChatGPT	Vanilla QA4RE	32.1 32.8	74.8 68.0	44.9 44.2 (-0.7)	45.4 48.3	61.3 76.8	52.1 59.3 (+7.2)	30.3 34.7	79.6 79.1	43.9 48.2 (+4.3)	18.2 29.9	20.8 35.2	19.4 32.3 (+12.9)	40.1 46.0 (+5.9)	Methods	K=0
code-002	Vanilla QA4RE	27.2 37.7	70.1 65.4	39.2 47.8 (+8.6)	42.7 48.0	70.4 74.0	53.1 58.2 (+5.1)	27.5 31.7	77.7 65.5	40.6 42.7 (+2.1)	27.2 25.2	25.6 29.2	26.4 27.0 (+0.6)	39.8 43.9 (+4.1)	Fine-Tuning	-
text-002	Vanilla QA4RE	31.2 35.6	73.1	43.7 46.8 (+3.1)	44.1 46.4	76.3 72.4	55.9 56.5 (+0.6)	30.2 35.7	76.8 76.8	43.3 48.8 (+5.4)	31.4 29.4	28.8 34.3	30.1 31.6 (+1.5)	43.2 45.9 (+2.7)	PTR KnowPrompt	-
text-003	Vanilla QA4RE	36.9	68.8	48.1 59.4 (+11.3)	49.7 56.2	62.2	55.3 61.2 (+5.9)	38.2	76.8	51.0 59.4 (+8.4)	33.2 41.7	39.3	36.0 <u>43.3</u> (+7.3)	47.6 55.8 (+8.2)	NLI _{DeBERTa} -TEMP1 NLI _{DeBERTa} -TEMP2	55.0 49.4
FLAN-T5	Series															
XLarge	Vanilla QA4RE	51.6 40.0	49.1 78.2	50.3 53.0 (+2.7)	54.3 57.1	40.3 79.7	46.3 66.5 (+20.2)	56.0 40.7	59.1 85.9	$\frac{57.5}{55.3}$ (-2.2)	35.6 45.1	29.8 40.1	32.4 42.5 (+10.1)	46.6 54.3 (+7.7)	Vanilla QA4RE	48.1 59.4
XXLarge	Vanilla QA4RE	52.1 40.6	47.9 82.9	49.9 54.5 (+4.6)	56.6 56.6	54.0	55.2 67.3 (+12.1)	52.6	50.9	51.7 54.3 (+2.6)	29.6	28.8 47.8	29.2 44.1 (+14.9)	46.5 55.1 (+8.6)		

Open-Vocabulary Relation Type Discovery

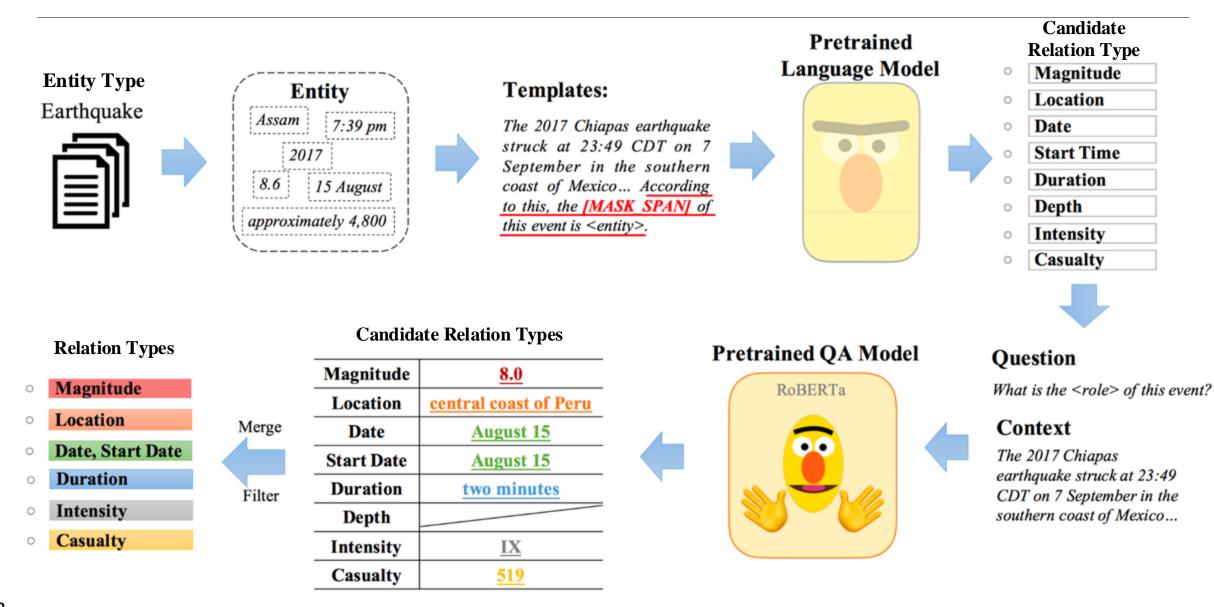
- Related Work:
 - Most of existing studies rely on hand-crafted ontologies (costly, cannot generalize)
 - A few studies try to automatically induce argument roles (limited pre-defined glossary)
- New Task: Infer a set of relation type names for a given entity type to describe the crucial relations between the entity type and its related entities

The 2007 Peru earthquake, which measured 8.0 on the moment magnitude scale, hit the <u>central coast of Peru</u> on <u>August 15</u> at 23:40:57 UTC (18:40:57 local time) and lasted <u>two minutes</u>. The epicenter was located 150 km (93 mi) south-southeast of Lima at a depth of 39 <u>km</u> (24 mi). The United States Geological Survey National Earthquake Information Center reported that it had a maximum Mercalli intensity of <u>IX</u>. The Peruvian government stated that <u>519</u> people were killed by the quake.

0	Magnitude		0.0
0	Location	Magnitude	<u>8.0</u>
0		Location	<u>central coast of Peru</u>
0	Date	Date	August 15
0	Time	Time	23:40:57 UTC
0	Duration	Duration	<u>two minutes</u>
0	Depth	Depth	<u>39 km</u>
0	Intensity	Intensity	IX
0	Casualty	Casualty	<u>519</u>

Yizhu Jiao, Sha Li, Yiqing Xie, Ming Zhong, Heng Ji and Jiawei Han "Open-Vocabulary Argument Role Prediction for Event Extraction", EMNLP'22

Framework for RolePred

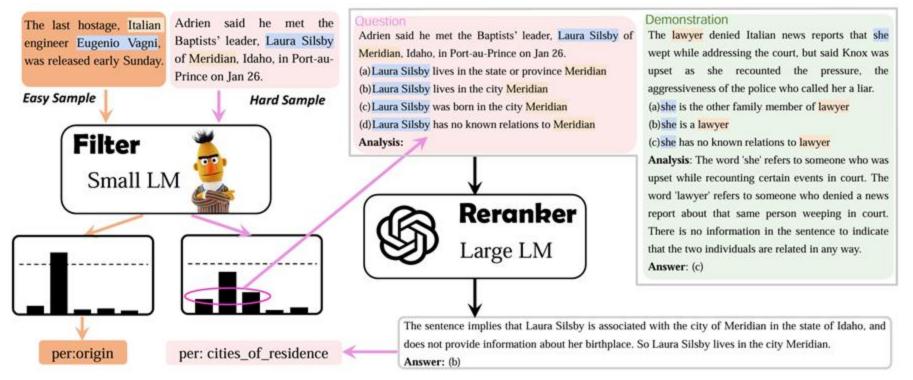


Experiment: Relation Type Discovery

Relation Type Pred	liction —						Relation	Extractior	י w/o (Golde	n Roles
Models	Precision	Hard Matching Recall	F1	S Precision	oft Matching Recall	F1	Models		Р	R	F1
LiberalEE VASE ODEE CLEVE	0.1342 0.0926 0.1241 0.1363	0.2613 0.1436 0.3076 0.2716	0.1773 0.1125 0.1768 0.1815	0.3474 0.2581 0.3204 0.3599	0.5340 0.4274 0.4862 0.5712	0.4209 0.3218 0.3862 0.4415	LiberalEE VASE ODEE CLEVE		0.2009 0.2123 0.2402 0.3529	0.2941 0.3257 0.3712 0.3890	0.2387 0.2570 0.2917 0.3701
ROLEPRED (BERT) ROLEPRED (T5) - RoleMerge - RoleMerge - RoleFilter	0.2128 0.2552 0.2233 0.1928	0.4582 0.6461 0.6962 0.6582	0.2906 0.3659 0.3381 0.2983	0.4188 0.4591 0.4234 0.4188	0.6896 0.7079 0.7677 0.7084	0.5211 0.5570 0.5457 0.5264		(Roberta)	0.4170 0.4131 0.3855 0.4397 0.6664	0.4333 0.5774 0.6187 0.5001 0.4948	0.4250 0.4817 0.4750 0.4679 0.5679
Human	0.6098	0.8270	0.7020	0.7365	0.8732	0.7990		Output of	RolePred		
Example of the generated relation types	victim	cause	death	toll	Resu RoleP	racted ults by red and	Victims State Date Killer Place		kley and N Florid November Scott Paul J The yoga s	la 2, 2018 Beierle	Vessem
	killer p	erpetrator	data and time date day		Das	elines	Time Duration Motive		5:37 p.m. ee and a ha hatred of v	lf minutes vomen	
target gunman suspect place motive scene site						Target Year Output of Ol		ee Hot Yog 2018 Output			
54	Durat	lon		year				e gunman x women	Agent Patient Time	six	aul Beierle women 2018

LLM as Rerankers for Hard Samples

Proposed a framework where LLMs complement SLMs by handling challenging samples that SLMs struggle with (based on confidence) SLMs as filters and LLMs as rerankers



Yubo Ma, Yixin Cao, YongChing Hong, Aixin Sun, "Large Language Model Is Not a Good Few-shot Information Extractor, but a Good Reranker for Hard Samples!", EMNLP'23 Findings

Experimental Results

- Effectiveness of the proposed filter-then-rerank paradigm
- □ Performance gains are nearly orthogonal to SLM ensemble

		Few 5-shot	NERD (N 10-shot	,		CREV (F 50-shot	RE) 100-shot		ACE (ED) 10-shot	
	CODEX nstructGPT GPT-4		54.0(1.4) 54.6(-)	· · ·	60.1(-)	1 /			. ,	· · ·
P	Previous SoTA + Ensemble (S) + Rerank (S)	59.6(1.7)	$\begin{array}{c} 61.4(0.8) \\ 61.8(1.2) \\ 61.0(1.7) \end{array}$	62.6(1.0)	64.9(1.5)	71.9(2.2)	74.1(1.7)	56.9(4.7)	64.2(2.1)	66.5(1.7)
				Vicuna-1	13B					
×	+ Rerank (L) + Ensemble (S) + Rerank (L)		61.9(2.1) 62.1(0.7)	· · ·						1 7
LLM	., ., .,			Instruct						
+	+ Rerank (L) + Ensemble (S) + Rerank (L)		62.7(0.8) 63.2(0.9)							
SLM				GPT-4						
	+ Rerank (L) + Ensemble (S) + Rerank (L)		$\frac{62.6}{62.8}_{(0.9)}$. ,			

Outline

- Span Detection
- Entity Typing
- Relation Extraction
- Comprehensive Knowledge Structuring
 - Knowledge Graph Construction
 - General KG
 - Domain-specific KG
 - □ Theme-specific KG
 - Database Population

LLM-assisted Construction

□ Knowledge Graph GPT

Using prompting methods to construct knowledge graphs from plain text.

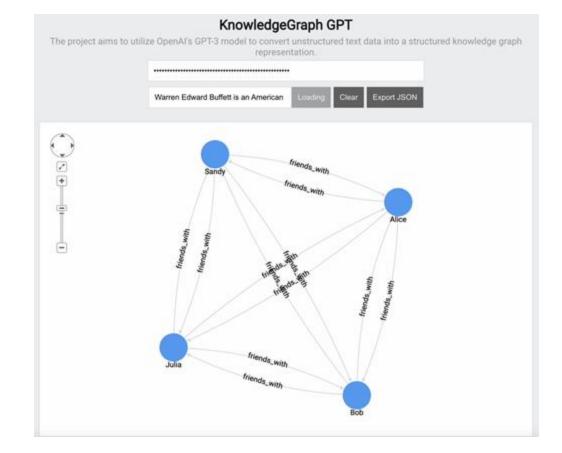
You are given a prompt. Extrapolate as many relationships as you can from the prompt and generate tuples like (source, relation, target). Make sure there are always source, relation and target in the tuple.

Example:

prompt: John knows React, Golang, and Python. John is good at Software Engineering and Leadership tuple: (John, knows, React); (John, knows, Golang); (John, knows, Python); (John, good_at, Software_Engineering); (John, good_at, Leadership);

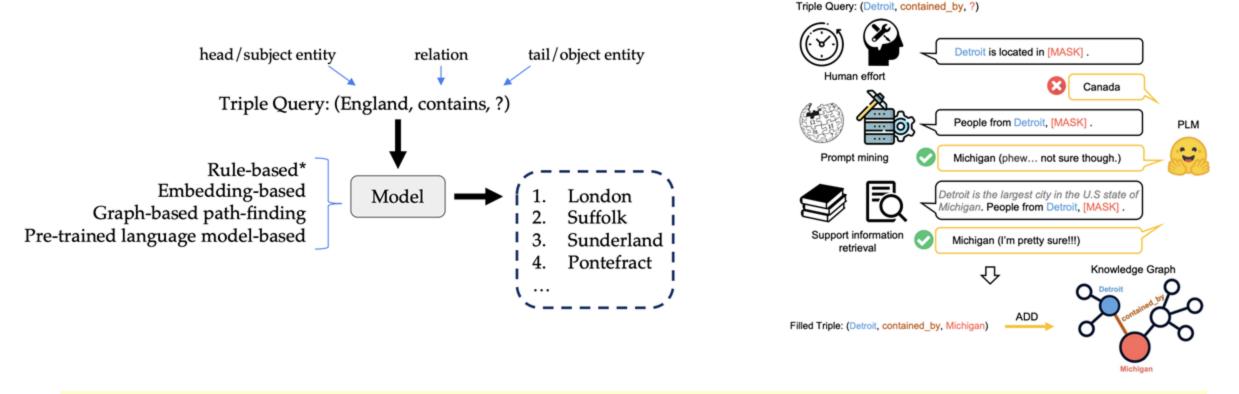
prompt: Bob is Alice's father. Alice has one brother John. tuple: (Bob, father_of, Alice); (John, brother_of, Alice) prompt: \$prompt

tuple:



Knowledge Graph Completion

- Knowledge graph completion
 - Construction aims to build a foundational representation of knowledge
 - Completion seeks to fill gaps and extend the graph's coverage

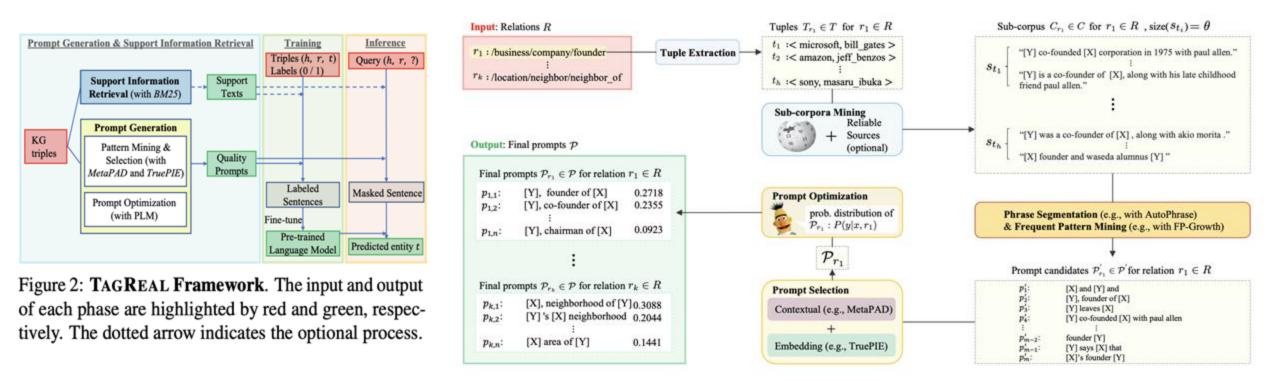


Pengcheng Jiang, et al., "Text-Augmented Open Knowledge Graph Completion via Pre-Trained Language Models", ACL'23 Findings

TagReal: Knowledge Graph Completion

TagReal

Automatically generates quality query prompts and retrieves support information from large text corpora to probe knowledge from PLM for KG completion.



TagReal: Knowledge Graph Completion

Experimental Results

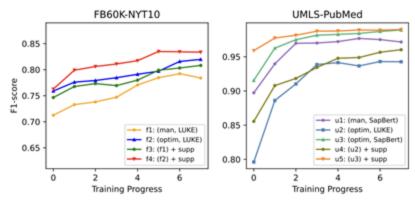
Results on FB60K-NYT10

	Model	Hits@5	20% Hits@10	MRR	Hits@5	50% Hits@10	MRR	Hits@5	100% Hits@10	MRR
		mses	Insero	MIXIX	mses	Thise to	MIKIK	maes	Thise to	mu
	TransE (Bordes et al., 2013)	29.13	32.67	15.80	41.54	45.74	25.82	42.53	46.77	29.80
	DisMult (Yang et al., 2014)	3.44	4.31	2.64	15.98	18.85	13.14	37.94	41.62	30.50
KGE-based	ComplEx (Trouillon et al., 2016a)	4.32	5.48	3.16	15.00	17.73	12.21	35.42	38.85	28.59
KGE-based	ConvE (Dettmers et al., 2018)	29.49	33.30	24.31	40.10	44.03	32.97	50.18	54.06	40.39
	TuckER (Balažević et al., 2019)	29.50	32.48	24.44	41.73	45.58	33.84	51.09	54.80	40.47
	RotatE (Sun et al., 2019)	15.91	18.32	12.65	35.48	39.42	28.92	51.73	55.27	42.64
	RC-Net (Xu et al., 2014)	13.48	15.37	13.26	14.87	16.54	14.63	14.69	16.34	14.4
Text&KGE-based	TransE+Line (Fu et al., 2019)	12.17	15.16	4.88	21.70	25.75	8.81	26.76	31.65	10.97
	JointNRE (Han et al., 2018)	16.93	20.74	11.39	26.96	31.54	21.24	42.02	47.33	32.68
RL-based	MINERVA (Das et al., 2017)	11.64	14.16	8.93	25.16	31.54	22.24	43.80	44.70	34.62
RL-based	CPL (Fu et al., 2019)	15.19	18.00	10.87	26.81	31.70	23.80	43.25	49.50	33.52
DI M based	PKGC (Lv et al., 2022)	35.77	43.82	28.62	41.93	46.70	31.81	41.98	52.56	32.11
PLM-based	TagReal (our method)	45.59	51.34	35.41	48.98	55.64	38.03	50.85	60.64	38.8

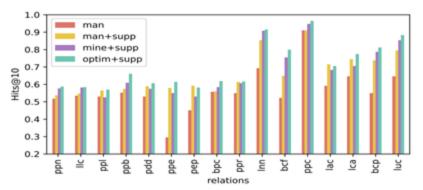
Table 1: Performance comparison of KG completion on FB60K-NYT10 dataset. Results are averaged values of ten independent runs of head/tail entity predictions. The highest score is highlighted in **bold**.

 TAGREAL has superb performance even with limited training data, outperforming existing embedding-based, graph-based, and PLM-based methods.

Performance Variation of F1-score



Relation-wise Hits@10 on FB60K-NYT10



Outline

- Span Detection
- Entity Typing
- Relation Extraction
- Comprehensive Knowledge Structuring
 - Knowledge Graph Construction
 - □ General KG

- Domain-specific KG
- □ Theme-specific KG
- Database Population

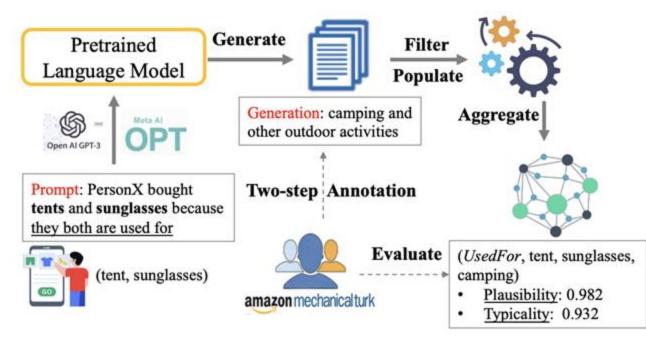
Domain-specific KG

- Define the domain scope (biomedical, music, chemistry)
- Design the ontology by domain expertise
 - □ classes, properties, relations, and hierarchies
- □ Identify data source:
 - relevant databases, publications, and datasets (both structured and unstructured data sources)
- Entity recognition and linking
- Relationship extraction
- □ Knowledge integration
 - merge information from various sources
 - resolve conflicts and inconsistencies
 - Validation and refinement

Domain-specific KG

FolkScope (E-commerce)

leverage the generation power of LLMs and human in-the-loop annotation to semi-automatically construct KG



- STEP1: use LLMs first generate intention assertions via e-commerce specific prompts to explain shopping behaviors
- STEP2: annotate plausibility and typicality labels of sampled intentions as training data in order to populate human judgments to all automatic generations.
- STEP3: propose pattern mining and conceptualization to form more condensed and abstract knowledge

Changlong Yu, et al., "FolkScope: Intention Knowledge Graph Construction for E-commerce Commonsense Discovery", ACL'23 Findings

Domain-specific KG

Experimental Results: FolkScope (E-commerce)

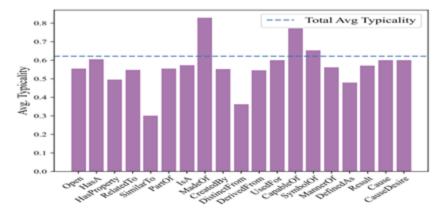
Relation-wise Accuracy

Relation	Acc. Rate	# Edges	# Tails	Avg. Length
Open	87.54%	703,059	151,748	7.86
HasA	94.08%	710,331	68,516	5.53
HasProperty	79.13%	317,938	133,877	5.00
RelatedTo	91.89%	571,918	130,551	3.08
SimilarTo	86.35%	685,737	18,603	3.53
PartOf	79.60%	674,928	114,983	4.36
IsA	89.05%	591,037	98,262	3.82
MadeOf	90.05%	528,289	70,246	5.06
CreatedBy	95.15%	267,459	74,920	3.93
DistinctFrom	91.74%	861,929	80,295	4.66
DerivedFrom	85.54%	444,131	61,696	4.90
UsedFor	91.79%	630,462	45,206	2.58
CapableOf	87.73%	681,480	101,170	5.23
SymbolOf	78.04%	809,196	52,075	3.46
MannerOf	89.44%	371,892	122,829	4.38
DefinedAs	85.59%	288,411	151,986	6.31
Result	44.79%	568,523	166,018	8.80
Cause	80.50%	696,392	185,042	7.06
CauseDesire	67.23%	833,524	155,422	5.61
Total	83.40%	11,236,636	1,874,782	5.02

Matched KG subsets

Knowledge Graph	Clo	thing	Electronics			
Knowledge Graph	# Edges	Coverage	# Edges	Coverage		
Matched Knowledge Graph	432,119	79.83%	117,836	82.40%		
+ Plau. >0.5	323,263	79.83%	78,908	82.40%		
+ Plau. >0.5 and Typi. >0.5	141,422	79.67%	40,978	80.20%		
+ Plau. >0.9	269,210	79.83%	58,013	82.39%		
+ Plau. >0.9 and Typi. >0.9	103,262	79.36%	27,288	76.94%		

Relation-wise Human evaluation on typicality



Outline

- Span Detection
- Entity Typing
- Relation Extraction
- Comprehensive Knowledge Structuring
 - Knowledge Graph Construction
 - General KG
 - Domain-specific KG
 - Theme-specific KG
 - Database Population

Theme-specific KG Construction

Task Setting

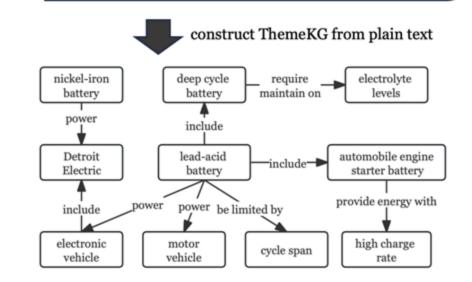
 Given a set of documents of a specific theme, extract the entities and corresponding relations to construct a knowledge graph

Challenges

- Open vocabulary
- No annotation
- Small set of documents.
- Directly use LLMs easily leads to unclear/wrong relations (*have, have due to, lit up in colors of*) and inaccurate entities (*two main types*)

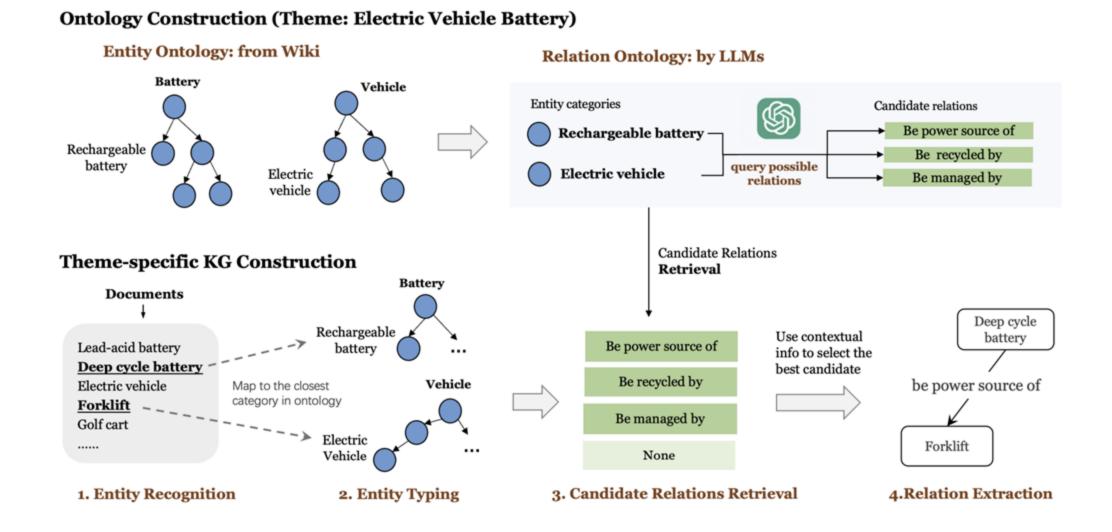
Theme: Electrical Vehicle Batteries

Lead-acid batteries suffer from relatively short cycle lifespan. There are two main types of lead-acid batteries: automobile engine starter batteries, and deep cycle batteries. Automobile engine starter batteries are designed to provide high charge rates. Lead-acid batteries are used in electric vehicles, with the notable exception of some early battery electric vehicles, such as the Detroit Electric which used a nickel-iron battery.



Linyi Ding, Sizhe Zhou, Jinfeng Xiao, Jiawei Han, "Automated Construction of Theme-specific Knowledge Graphs", Arxiv'24

Theme-specific KG Construction



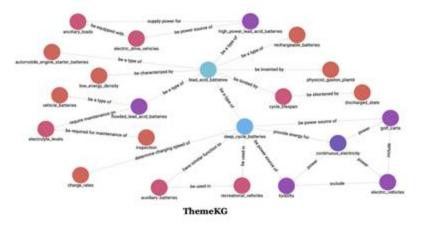
Theme-specific KG Construction

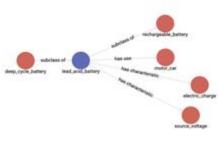
Main Results

Dataset	Method		Entity Metr	ric		Triple Metr	Theme Metric	
Dutuset		Recall Precision		F1-score	Recall	Precision	F1-score	Coherence
	OpenIE [37]	0.62	0.36	0.46	0.13	0.24	0.17	0.46
	REBEL [24]	0.22	0.80	0.35	0.11	0.80	0.19	0.80
EVB	IMoJIE [31]	0.44	0.44 0.49 0.46		0.26	0.45	0.33	0.78
	KG-GPT [47]	0.72	0.69	0.70	0.67	0.64	0.65	0.95
	GPT-4 [1]	0.68	0.71	0.69	0.64	0.65	0.64	0.97
	TKGCon (w/o ontology)	1 1		/	0.67 0.57	0.62	0.92	
	TKGCon	0.92	0.80	0.86	0.78	0.73	0.75	0.97
	OpenIE [37]	0.52	0.28	0.36	0.17	0.22	0.19	0.35
	REBEL [24]	0.16	0.87	0.27	0.15	0.75	0.25	0.75
HAI	IMoJIE [31]	0.33	0.39	0.36	0.25	0.31	0.28	0.83
	KG-GPT [47]	0.84	0.79	0.81	0.72	0.69	0.70	0.91
	GPT-4 [1]	0.82	0.80	0.83	0.70	0.72	0.71	0.93
	TKGCon (w/o ontology)	/	/	/	0.75	0.62	0.68	0.88
	TKGCon	0.90	0.88	0.89	0.81	0.75	0.78	0.92

Case Study on Applications of TKGCon

Question	Which countries support Hamas or condemn Israel in the Hamas attack on Israel in Oct 2023?				
Vanilla GPT4	I'm sorry, but as of my knowledge cutoff date in march 2023, i do not have information on specific events that occurred in october 2023.				
RAG+GPT4	In the Middle East and North Africa , most coun- tries either condemned Israel or offered full-throated support to Hamas. North Korea is also mentioned as condemning Israel.				
TKG+GPT4	1. Iran, 2. Persian Gulf countries, 3. North Korea, 4. most Middle East countries, 5. most North Africa countries				





WikiData

Comparison of knowledge in ThemeKG and Wikidata

70

Outline

- Span Detection
- Entity Typing
- Relation Extraction
- Comprehensive Knowledge Structuring
 - Knowledge Graph Construction
 - Database Population

On-demand Information Extraction

Average users may have IE needs that

don't align well with existing well-defined tasks.

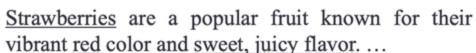
- Task: On-demand IE
 - Given a user instruction and the related text, extract the sought-after

information into a structured table

format

Instruction: I personally prefer eating fruits. Extract some key features of the fruits.

Text:



One of the most widely consumed fruits, apples come in various colors, including red ...

Bananas are elongated, slightly curved fruits that have a thick, protective peel and soft, sweet flesh ...

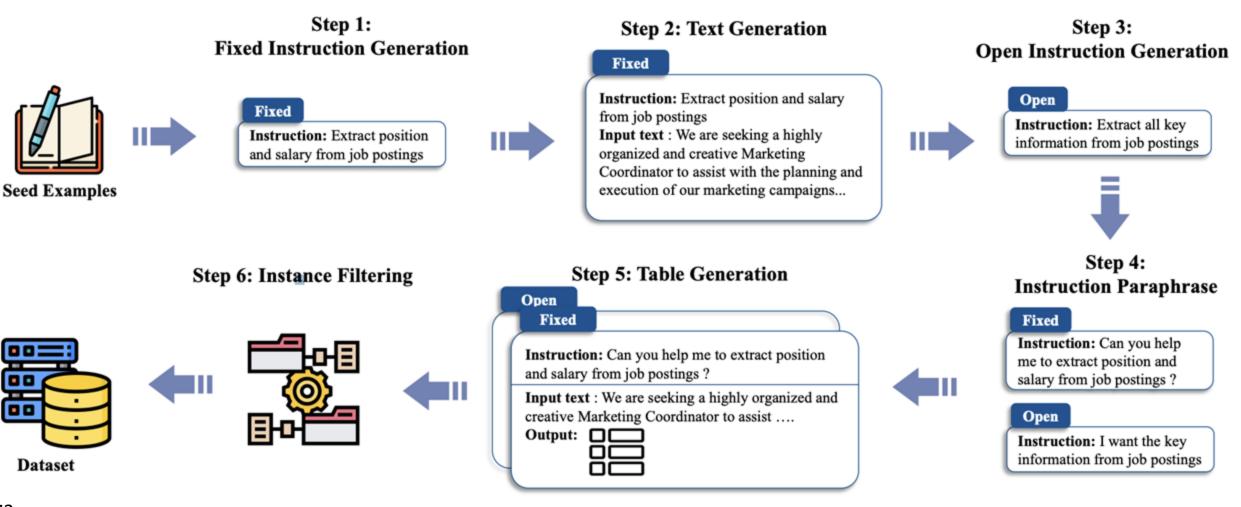
Extracted Table:

Extracted Table:						
Fruit	Shape	Taste	Nutrients			
Strawberries	Heart- shaped	Sweet, juicy	Vitamin C, antioxidants			
Apples	Round	Crisp, sweet	Dietary fiber, vitamin C			
Bananas	Elongated, curved	Soft, sweet	Potassium, vitamin B6			

Jiao, Yizhu, et al., "Instruct and Extract: Instruction Tuning for On-Demand Information Extraction." EMNLP'23.

Method – Instruction Tuning for LLMs

Synthetic data generation + Instruction tuning LLaMa-7b



Integration-Aware Information Extraction

User

Text

==

- Task: Text2Database
- Input
 - Database with its schema
 - User Instruction
 - A set of text documents
- Output
 - Populated database

Help to add the information of a movie into the database.

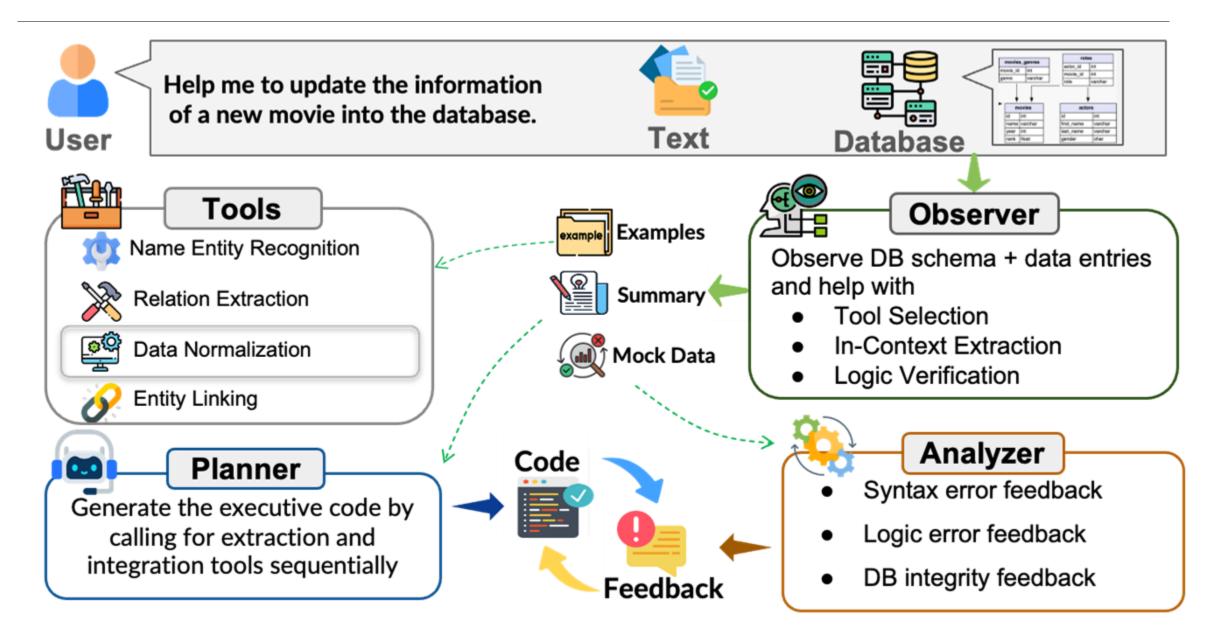
The Lion King is a 1994 American animated musical drama film produced by Walt Disney Feature Animation. This film was directed by Roger Allers, who is a famous male artist born in Rye, New York, USA ...

🛢 Database

] Tab	Table: Movie					Table: Director			
	ID	Name	Release Date	Director ID		ID	Name	Gender	Birth Place		
	0	Batman	1966- 07-30	0		0	Tim Burton	Male	USA		
	1	Ghost	1990- 07-13	10							
						48	Claire Denis	Female	France		
ĺ	98	Lion King	1995- 10-30	49		49	Roger Allers	Male	USA		

Jiao, Yizhu, et al., "Text2DB: Integration-Aware Information Extraction with Large Language Model Agents." ACL'24 Findings.

Method – LLM based Agent



References

- Xiang Chen, Ningyu Zhang, Xin Xie, Shumin Deng, Yunzhi Yao, Chuanqi Tan, Fei Huang, Luo Si, Huajun Chen, "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction", WWW'22
- Yew Ken Chia, Lidong Bing, Soujanya Poria, Luo Si, "RelationPrompt: Leveraging Prompts to Generate Synthetic Data for Zero-Shot Relation Triplet Extraction", ACL'22 Findings
- Linyi Ding, Sizhe Zhou, Jinfeng Xiao, Jiawei Han, "Automated Construction of Theme-specific Knowledge Graphs", arXiv'24
- Xiaotao Gu, Zihan Wang, Zhenyu Bi, Yu Meng, Liyuan Liu, Jiawei Han, Jingbo Shang. "UCPhrase: Unsupervised Context-aware Quality Phrase Tagging." (KDD'21)
- Xiaotao Gu, Yikang Shen, Jiaming Shen, Jingbo Shang, Jiawei Han, "Phrase-aware Unsupervised Constituency Parsing" (ACL'22)
- Xu Han, Weilin Zhao, Ning Ding, Zhiyuan Liu, Maosong Sun, "PTR: Prompt Tuning with Rules for Text Classification", AI Open
- Pere-Lluís Huguet Cabot, Roberto Navigli, "REBEL: Relation Extraction By End-to-end Language generation", ACL'21
- Pengcheng Jiang , Shivam Agarwal , Bowen Jin , Xuan Wang, Jimeng Sun, Jiawei Han, "Text-Augmented Open Knowledge Graph Completion via Pre-Trained Language Models", ACL'23 Findings
- Yizhu Jiao, Sha Li, Yiqing Xie, Ming Zhong, Heng Ji, Jiawei Han. "Open-vocabulary argument role prediction for event extraction." EMNLP'22 Findings.
- Yizhu Jiao, Ming Zhong, Sha Li, Ruining Zhao, Siru Ouyang, Heng Ji, and Jiawei Han. "Instruct and Extract: Instruction Tuning for On-Demand Information Extraction." EMNLP 2023.
- Yizhu Jiao, Sha Li, Sizhe Zhou, Heng Ji, and Jiawei Han. "Text2DB: Integration-Aware Information Extraction with Large Language Model Agents." ACL 2024 findings.
- Seoyeon Kim, Kwangwook Seo, Hyungjoo Chae, Jinyoung Yeo, Dongha Lee, "VerifiNER: Verification-augmented NER via Knowledgegrounded Reasoning with Large Language Models", ACL'24

References

- Yubo Ma, Yixin Cao, YongChing Hong, Aixin Sun, "Large Language Model Is Not a Good Few-shot Information Extractor, but a Good Reranker for Hard Samples!", EMNLP'23 Findings
- Siru Ouyang, Jiaxin Huang, Pranav Pillai, Yunyi Zhang, Yu Zhang, Jiawei Han, "Ontology Enrichment for Effective Fine-grained Entity Typing", KDD'24
- Tanay Komarlu, Minhao Jiang, Xuan Wang, Jiawei Han, "OntoType: Ontology-Guided and Pre-Trained Language Model Assisted Fine-Grained Entity Typing", KDD'24
- Yiqing Xie, Jiaming Shen, Sha Li, Yuning Mao, Jiawei Han, "EIDER: Evidence-enhanced Document-level Relation Extraction", ACL'22 Findings
- Changlong Yu, Weiqi Wang, Xin Liu, Jiaxin Bai, Yangqiu Song, Zheng Li, Yifan Gao, Tianyu Cao, and Bing Yin. "FolkScope: Intention Knowledge Graph Construction for E-commerce Commonsense Discovery", ACL'23 Findings
- Kai Zhang, Bernal Jiménez Gutiérrez, Yu Su, "Aligning Instruction Tasks Unlocks Large Language Models as Zero-Shot Relation Extractors", ACL'23 Findings
- Yu Zhang, Yu Meng, Xuan Wang, Sheng Wang, Jiawei Han. "Seed-guided topic discovery with out-of-vocabulary seeds." NAACL'22.
- Yu Zhang, Yunyi Zhang, Yucheng Jiang, Martin Michalski, Yu Deng, Lucian Popa, ChengXiang Zhai, Jiawei Han. "Entity Set Co-Expansion in StackOverflow." IEEE Big Data 2022
- Ming Zhong, Siru Ouyang, Minhao Jiang, Vivian Hu, Yizhu Jiao, Xuan Wang, Jiawei Han, "ReactIE: Enhancing Chemical Reaction Extraction with Weak Supervision", ACL'23 Findings
- Sizhe Zhou, Suyu Ge, Jiawei Han, "Corpus-Based Relation Extraction by Identifying and Refining Relation Patterns", ECMLPKDD'23
- Sizhe Zhou, Yu Meng, Bowen Jin, Jiawei Han, "Grasping the Essentials: Tailoring Large Language Models for Zero-Shot Relation Extraction", arXiv'24
- 77 Wenxuan Zhou, Muhao Chen, "An Improved Baseline for Sentence-level Relation Extraction", AACL'22

Q&A

